Search This Blog

Sunday, May 8, 2016

Master in Data Science with R (6 Courses) Video Training DVD Rs 599/-



Total Course : 6 Course
Total Duration : 27:15 Hours
Total DVDs : 2 DVDs


Course 01. Learning to Program with R

Duration: 4.5 hours
56 tutorial videos

01. Introduction
Introduction And Course Overview
Installing R And R Studio
Navigating R Studio
Packages
Assigning Variables
Numbers, Strings, And Booleans
Workspace Operations
0109 How To Access Your Working Files
02. Basic Operations And Manipulations
Basic Operators
Vectors
Sequences
Basic Statistical Functions
Matrices
Matrix Operations
Basic Matrix Statistics
Generating Random Numbers
String Functions
Dates And Times
03. Plotting
0301 Line Plots
0302 Plotting Arguments
0303 Bar Graphs And Histograms
0304 Scatter Plots
0305 Probability Plots
0306 Combining And Saving Plots
04. Working With Data
0401 Arrays
0402 Lists
0403 Data Frames
0404 Data Import
0405 Missing Data - Part 1
0406 Missing Data - Part 2
0407 Ordering And Sorting
0408 Subsetting And Indexing
0409 Merging Data
0410 Examining Files And Objects
05. Data Analysis
0501 Descriptive Statistics
0502 Apply Functions
0503 Linear Models
0504 Extracting Model Information
0505 Principal Componant Analysis
06. Time Series Data
0601 XTS Objects
0602 ACF Plots
0603 Decomposition
0604 Exponential Smoothing
0605 Rolling Functions
0606 ARIMA Models
07. Conditional Statements And Loops
0701 If Statements
0702 For Loops
0703 While Loops
0704 Appending Loops
08. User-Defined Functions
0801 Writing Functions
0802 Debugging Functions
0803 Recursive Functions
09. Saving Data
0901 Saving Different Types Of Data
0902 Additional Resources



Course 02. Introduction to Data Science with R

Duration : 8 hours 36 minutes


Introduction to Data Science with R

Introduction to the Course 15m  29s

The R Language 1

Orientation to R 16m  39s

Data Structures and Types 16m  06s

Lists and Data Frames 18m  24s

The R Language 2
Subsetting 1 24m  15s

Subsetting 2 08m  02s

R Packages 05m  48s

Logical Tests 31m  19s

Missing Values 10m  55s

Visualizing Data
Introduction to ggplot2 07m  44s

Aesthetics 13m  45s

Facetting 07m  17s

Geoms 16m  24s

Position Adjustments 13m  06s

Visualizing Distributions 16m  43s

Visualizing Big Data 09m  05s

Saving Graphs 05m  46s

Adjusting Graphs
Visualizing Map Data 10m  14s

Titles and Coordinate Systems 11m  39s

Scales and Color Schemes 12m  12s

Themes 07m  07s

Axis Labels and Legends 09m  44s

Further Learning 03m  12s

Tidy Data
Reading in Data 09m  19s

Melt 12m  55s

dcast 08m  27s

rbind and cbind 02m  13s

Saving Data 04m  59s

Transforming Data
Line Plots 07m  17s

Filter and Select 04m  58s

Arrange, Mutate, and Summarize 07m  28s

Joining Data Sets 10m  53s

Grouping Data 08m  14s

The tbl Format 03m  06s

Advanced Manipulations 11m  28s

Modeling Basics
Introduction to Modeling 06m  22s

Linear Models and Model Syntax 16m  21s

Model Inference 15m  40s

Categorical Variables 07m  45s

Multivariate Models 18m  06s

Advanced Modeling

Introduction to Variable Selection 11m  17s

Best Subsets Selection 07m  21s

Stepwise Selection 11m  31s

Penalized Regression 04m  15s

Non-linear Models 19m  09s

Logistic Regression 10m  23s

Modeling Resources 02m  39s

Further Learning

Resources for R 03m  39s

Course 03. Expert Data Wrangling with R

Duration : 3 hours 50 minutes


Introduction 06m  30s

Two New Conventions 08m  17s

Data Science for Data Wranglers 14m  20s

Data Manipulation

The dplyr Package 02m  23s

Select Variables 08m  28s

Filter Observations 10m  02s

Derive Variables 06m  03s

Summarize Observations 08m  41s

Group Observations 17m  37s

Re-Arrange Observations 05m  08s

Case Study 1 - TB Counts 08m  26s

Data Science for Data Wranglers, Part 2 - Units of Analysis 14m  32s

Data Tidying

Data Science for Data Wranglers, Part 3 - Tidy Data 10m  45s

Reshape the Layout of Your Data 18m  13s

Separate and Unite Variables 06m  51s

Data Science for Data Wranglers, Part 4 - The Best Format 17m  42s

Combine Data Sets 16m  33s

Case Study 2 - TB Rates 09m  08s

Data Visualization

Data Science for Data Wranglers, Part 5: The Structure of Visualizations 05m  53s

Visualize Observations 08m  28s

Visualize Variables 17m  04s

Conclusion

How to Learn More 09m  35s


Course 04. Writing Great R Code 

Duration : 59 minutes

Writing Great R Code - 59 minutes



Course 05. Data Science with Microsoft Azure and R

Duration: 7 hours - 72 tutorial videos


01. Introduction
Introduction
About The Author
02. Overview Of Azure ML
Introduction To Azure ML Studio
Experiments And Workflows In Azure ML Studio
Azure ML Modules
Data I/O In Azure ML
Creating And Evaluating A First Machine Learning Model
Documentation And Examples
03. Introduction To R In Azure ML
Editing, Debugging And Executing R In Azure ML
An Execute R Script Example
The Create R Model Module
04. Data Science Examples
0401 Overview Of Data Science Examples
0402 The Data Science Process
05. Data Munging In Azure ML
0501 Introduction To Data Transformation And Cleaning
0502 Dealing With Metadata
0503 Duplicate And Missing Data
0504 Standardization And Transformation
0505 Errors And Outliers
0506 Quantization And Categories
0507 Combining Data Joins
06. SQL In Azure ML
0601 Introduction To Apply SQL Transformation Module
0602 Apply SQL Transformation Exercise
07. Using The dplyr Package
0701 Intro To dplyr
0702 dplyr Example - Part 1
0703 dplyr Example - Part 2
08. Installing R Packages In Azure ML
0801 Installing R Packages
09. Reshaping Data With tidyr
0901 Reshaping Data With tidyr
10. Time Series Data In Azure ML
1001 Date-Time Classes In Azure ML
1002 POSIXct Example
11. The ggplot2 Package
1101 Intro To ggplot2
1102 ggplot2 Exercise
12. Feature Selection And Dimensionality Reduction
1201 Introduction To Feature Selection And Dimensionality Reduction
1202 Exercise - Filter Based Feature Selection
1203 Exercise - randomForest Feature Selection
1204 Projection Methods for Dimensionality Reduction
13. Functional Programming With R
1301 Introduction To Functional Programming With R
1302 Functional Programming Example
14. Regression Example
1401 Introduction To Regression Example
1402 Data Preparation Example
1403 Examining Correlations
1404 Time Series Plots
1405 Understanding Features With Box Plots
1406 Other Exploratory Plots
1407 Feature Selection
1408 Model Evaluation With Time Series Plots
1409 Model Evaluation Of Residuals - Part 1
1410 Model Evaluation Of Residuals - Part 2
15. Regression Example - Improving the Model
1501 Introduction To Improving the Model
1502 Using An R Model
1503 Creating A New Azure ML Model
1504 Trimming Outliers
1505 Optimizing Model Parameters
1506 Further Improvements And Summary
16. R Object Communications In Azure ML
1601 Introduction To R Object Serialization
1602 R Object Serialization Example
17. Classification Example
1701 Introduction To Classification Example
1702 Data Preparation - Part 1
1703 Data Preparation - Part 2
1704 Exploring The Data
1705 Balance Cases
1706 Feature Selection
1707 Building Initial Models
1708 Model Evaluation
1709 First R Model
1710 Improving the R Model
1711 Summary
18. Azure ML Web Services
1801 Overview Of Publishing Azure ML Models As Web Services
1802 Creating An Azure ML Web Service
1803 Updating An Azure ML Web Service
1804 R Model Publishing
1805 Summary
19. Conclusion
1901 Wrap-Up


Course 06_Using R and Hadoop for Statistical Computation at Scale

Duration : 2.44 Hours


PART -1 : 1 H 20 M

PART -2 : 1 H 24 M


======================================================================

This DVDs are only suitable for a PC/laptop/Mac; it WILL NOT play on a TV 
======================================================================

Term

Shipping Banner

No comments:

Post a Comment